B.A (Prog) with Computer Science as Major
 CATEGORY-II

DISCIPLINE SPECIFIC CORE COURSE - 1: INTRODUCTION TO PROGRAMMING USING C++

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title \& Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
Introduction to Programming using C++	4	3	0	1	$\begin{aligned} & \text { Class XII } \\ & \text { pass } \end{aligned}$	Nil

Learning Objectives

This course is designed to:

- Introduce programming concepts using $\mathrm{C}++$ to students.
- Develop structured as well as object-oriented programming skills using C++ programming language.
- Achieve competence amongst its students to develop correct and efficient $\mathrm{C}++$ programs to solve problems spanning multiple disciplines.

Learning outcomes

On successful completion of the course, students will be able to:

- Write simple programs using built-in data types of C++.
- Implement arrays and user defined functions in C++.
- Solve problems spanning multiple disciplines using suitable programming constructs in C++.
- Solve problems spanning multiple disciplines using the concepts of object oriented programming in $\mathrm{C}++$.

SYLLABUS OF DSC - 1

Theory

Unit - 1
Introduction to C++
Need and characteristics of Object-Oriented Programming, Structure of a C++ Program (main () function, header files, output, input, comments), compile and execute a simple program

Unit - 2
(9 hours)
Data types and Expressions
Keywords, built in data types, variables and constants, naming convention, Input-Output statements, operators and their precedence, expressions, typecasting, library functions

Unit - 3
(12 hours)
Control Constructs in C++
Decision making using selection constructs, iteration using looping constructs.

Unit - 4

(6 hours)
Arrays, Pointers and User Defined Functions
Defining and initializing single and multi-dimensional arrays, user defined functions, passing arguments to functions, returning values from functions, inline functions, default arguments, introduction to pointers

Unit - 5

Classes and Objects

Need and implementation of abstraction, encapsulation, inheritance and polymorphism, creating classes, objects as function arguments, modifiers and access control, constructors and destructors.

Practical

(30 hours)

List of Practicals:

1. Write a program to find the largest of n natural numbers.
2. Write a program to find whether a given number is prime or not.
3. Write a program that takes a positive integer n and the produce n lines of output as shown:

*

```
**
***
****
```

(for $\mathrm{n}=4$)
4. Write a menu driven program for following:
a. to check whether a given number is odd or even.
b. display a fibonacci series
c. compute factorial of a number
5. Write a program to accept a number, reverse it and print the sum of its digits.
6. Write a program using functions to print the series and its sum:
$1+1 / 2!+1 / 3!+\ldots+1 / n!$
7. Write a program to perform the following operations on an input string
a. Print length of the string
b. Find frequency of a character in the string
c. Print whether characters are in uppercase or lowercase
d. to check whether a given string is palindrome or not.
8. Write a program that will prompt the user for a list of 5 prices. Compute the average of the prices and find out all the prices that are higher than the calculated average.
9. Design a class named Vehicle, having registration number and year as its private members. Define a suitable constructor and a method to print the details of a vehicle. Write a C++ program to test the above class.
10. Inherit a class Car from the Vehicle class defined above. Add model to the Car class. Define a suitable constructor and a method to print the details of a car. Write a C++ program to test inheritance of this class.

Essential Readings

- E. Balaguruswamy, Object Oriented Programming with C++,7th edition, McGraw-Hill Education, 2017.
- 2. Robert Lafore, Object Oriented Programming in C++, 4th edition, SAMS Publishing, 2008.

Suggestive Reading

- D.S. Malik, C++ Programming: From Problem Analysis to Program Design, 6th edition, Cengage Learning, 2013.
- (ii) Herbert Schildt, C++: The Complete Reference, 4th Edition, McGraw Hill, 2003.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC CORE COURSE - 2: PROGRAMMING FUNDAMENTALS USING PYTHON

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title \& Code	Credits	Credit distribution of the course		Eligibility criteria	Pre- requisite of the course (if any)	
	Lecture	Tutorial	Practical/ Practice		Nil	
Programming Fundamentals Using Python	4	3	0	1	Class XII pass	

Learning Objectives

This course is designed to:

- Introduce programming concepts using Python to students.
- Develop structured as well as object-oriented programming skills using Python.
- Achieve competence amongst its students to develop correct and efficient Python programs to solve problems spanning multiple disciplines.

Learning Outcomes

On successful completion of this course, a student will be able to:

- Write simple programs using built-in data types of Python.
- Implement arrays and user defined functions in Python.
- Solve problems spanning multiple disciplines using suitable programming constructs in Python.
- Solve problems spanning multiple disciplines using the concepts of object-oriented programming in Python.

SYLLABUS OF DSC - 2

Theory

Unit - 1

(6 hours)
Introduction to Python Programming
Problem solving strategies; Structure of a Python program; Syntax and semantics; Python interpreter/shell, indentation; Executing simple programs in Python.

Unit - 2

(12 hours)

Creating Python Programs

Identifiers and keywords; literals, numbers, and strings; Operators and expressions; Input and output statements; control structures (conditional statements, loop control statements, break, continue and pass), Errors and exception handling.

Unit - 3

(9 hours)

User Defined Functions

Defining functions, passing arguments and returning values, default arguments

Unit - 4

(18 hours)
Built-in Data Structures
Strings, Lists, Tuples, Sets, Dictionaries; their built-in functions, operators and operations

Practical

List of Practicals:

1. WAP to calculate total marks, percentage and grade of a student. Marks obtained in each of three subjects are to be input by the user. Assign grades according to the following criteria:

Grade A : if Percentage $>=80$
Grade B : if Percentage $>=60$ and Percentage <80

Grade C : if Percentage $>=40$ and Percentage <60
Grade D : if Percentage $<=40$
2. WAP to print factors of a given number.
3. WAP to add N natural numbers and display their sum.
4. WAP to print the following conversion table (use looping constructs):

Height (in Feet)	Height (in inches)
5.0 ft	60 inches
5.1 ft	61.2 inches
5.8 ft	69.6 inches
5.9 ft	70.8 inches
6.0 ft	72 inches

5. WAP that takes a positive integer n and the produce n lines of output as shown:

*

**

(for $\mathrm{n}=4$)
6. Write a menu driven program using user defined functions to print the area of rectangle, square, circle and triangle by accepting suitable input from user.
7. Write a function that calculates factorial of a number n.
8. WAP to print the series and its sum: (use functions)

$$
1 / 1!+1 / 2!+1 / 3!\ldots \ldots . .1 / n!
$$

9. WAP to perform the following operations on an input string
a. Print length of the string
b. Find frequency of a character in the string
c. Print whether characters are in uppercase or lowercase
10. WAP to create two lists: one of even numbers and another of odd numbers. The program should demonstrate the various operations and methods on lists.
11. WAP to create a dictionary where keys are numbers between 1 and 5 and the values are the cubes of the keys.
12. WAP to create a tuple $\mathrm{t} 1=(1,2,5,7,2,4)$. The program should perform the following:
a. Print tuple in two lines, line 1 containing the first half of tuple and second line having the second half.
b. Concatenate tuple $\mathrm{t} 2=(10,11)$ with t .

Essential Readings

- Kamthane, A. N., \& Kamthane, A.A. Programming and Problem Solving with Python, McGraw Hill Education, 2017.
- Balaguruswamy E. "Introduction to Computing and Problem Solving using Python",2nd edition, McGraw Hill Education, 2018.
- Taneja, S., Kumar, N. Python Programming- A modular Approach, Pearson Education India, 2018.

Suggestive Readings

- Guttag, J. V. Introduction to computation and programming using Python, MIT Press, 2018.
- (ii) Downey, A. B. Think Python-How to think like a Computer Scientist 2nd edition. O'Reilly 2015.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

